If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-2x-20=0
a = 7; b = -2; c = -20;
Δ = b2-4ac
Δ = -22-4·7·(-20)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{141}}{2*7}=\frac{2-2\sqrt{141}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{141}}{2*7}=\frac{2+2\sqrt{141}}{14} $
| -2x-3=3x-23 | | 3x-10=4x+9 | | 34x+369+9x=337 | | -4x=x^2+4 | | 3d-1/2(2d-8)=-5/4(d+8) | | 3x+3=15(x=-2;x=2;x=5) | | x+2=-28+6x | | 0=-0.4(c-6) | | -9=-2(3+r)-3(1+6r) | | 2x(4-x)=4x-6 | | 5+4•x=32+2x | | 4/7x-3/7=1 | | 5x+2=2+7x | | 3(2b+3)^2=36 | | 4.6x=-15.64 | | 2(3x+4)=4x+128. | | x1=4+x2=6 | | 2(4x+5)-4=7+2(5x-2) | | 8x-4=3x+61 | | 4/p-3=9 | | 5(x+8)+4x-1=-3(x+4)+2x+5 | | 5x-2(x-4)=5x-2x+8=3x+8= | | 4/7=2/3+y | | -(3r-1)=2r+5 | | x1=4 | | 6(6d+d)-5=1+6d | | x+5.39=4.48 | | 5x+45+2x-5+3x-25=360 | | 5x+45+2x-5+3x-25=90 | | 5x+45+2x-5+3x-25=180 | | 2n^2−2n+4=0 | | |x-2|=3 |